2,667 research outputs found

    Land use dynamics in favorable and unfavorable areas of southwest Germany

    Get PDF
    Since the “Neolithic Revolution” and the beginning of agriculture in central Europe about 7.500 a ago human influence on the environment is increasing. Human activities led to quasi-natural relief formation and created in many places a cultural landscape. Colluvial deposits are the correlate sediments of human induced soil erosion on slopes and depict an excellent archive for land use and landscape history. The present study combines pedological, archaeological and palynological analyses and knowledge with AMS 14C and luminescence datings to build up a stratigraphy of colluvial deposits, thereby allowing the reconstruction of past land use dynamics southwest Germany. Compared with Black Forest and the Swabian Jura, the Baar is a favorable area for agricultural land use, where seven main phases of colluvial deposition could be detected. Increased colluviation, and thus land use intensity, took place during the younger Neolithic, the early to middle Bronze Age, the Iron Age, the Roman Empire, and in three phases from the High Middle Ages onwards. The southeastern Black Forest low mountain range is an unfavorable area characterized by low temperatures, high precipitation and steep slopes. Nevertheless, human influence dates back to the Neolithic. Minor colluvial deposition phases were detected before the Middle Ages and increased formation of colluvial deposits during the High Middle Ages and the Modern Times. The colluvial stratigraphy shows an intense land use of the Black Forest area from the Middle Ages onwards. In the western Swabian Jura the pattern of colluvial deposition indicates land use from the Bronze Age onwards and for one site even since the Neolithic. The different land use dynamics in the Baar area compared to the Black Forest and Swabian Jura will be discussed against the paleoenvironmental conditions reconstructed from different archives. It is to analyze whether climate was the main determining factor for the settlement pattern in time and space or if there were other factors responsible, such as: different human motivations to settle the land depending on natural or cultural resources, conflicts in neighboring areas or trading relations. Feedback mechanisms of the anthropogenically modified landscape might also interact and determine settlement and land use dynamics

    Anharmonic Decay of Vibrational States in Amorphous Silicon

    Full text link
    Anharmonic decay rates are calculated for a realistic atomic model of amorphous silicon. The results show that the vibrational states decay on picosecond timescales and follow the two-mode density of states, similar to crystalline silicon, but somewhat faster. Surprisingly little change occurs for localized states. These results disagree with a recent experiment.Comment: 10 pages, 4 Postscript figure

    An Introduction to Nuclear Supersymmetry: a Unification Scheme for Nuclei

    Full text link
    The main ideas behind nuclear supersymmetry are presented, starting from the basic concepts of symmetry and the methods of group theory in physics. We propose new, more stringent experimental tests that probe the supersymmetry classification in nuclei and point out that specific correlations should exist for particle transfer intensities among supersymmetric partners. We also discuss possible ways to generalize these ideas to cases where no dynamical symmetries are present. The combination of these theoretical and experimental studies may play a unifying role in nuclear phenomena.Comment: 40 pages, 11 figures, lecture notes `VIII Hispalensis International Summer School: Exotic Nuclear Physics', Oromana, Sevilla, Spain, June 9-21, 200

    Polarized radio emission from extensive air showers measured with LOFAR

    Get PDF
    We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization of nearly 99%99\%, and that the angle between the polarization direction of the electric field and the Lorentz force acting on the particles, depends on the observer location in the shower plane. This can be understood as a superposition of the radially polarized charge-excess emission mechanism, first proposed by Askaryan and the geomagnetic emission mechanism proposed by Kahn and Lerche. We calculate the relative strengths of both contributions, as quantified by the charge-excess fraction, for 163163 individual air showers. We find that the measured charge-excess fraction is higher for air showers arriving from closer to the zenith. Furthermore, the measured charge-excess fraction also increases with increasing observer distance from the air shower symmetry axis. The measured values range from (3.3±1.0)%(3.3\pm 1.0)\% for very inclined air showers at 25m25\, \mathrm{m} to (20.3±1.3)%(20.3\pm 1.3)\% for almost vertical showers at 225m225\, \mathrm{m}. Both dependencies are in qualitative agreement with theoretical predictions.Comment: 22 pages, 14 figures, accepted for publication in JCA

    The radio emission pattern of air showers as measured with LOFAR - a tool for the reconstruction of the energy and the shower maximum

    Get PDF
    The pattern of the radio emission of air showers is finely sampled with the Low-Frequency ARray (LOFAR). A set of 382 measured air showers is used to test a fast, analytic parameterization of the distribution of pulse powers. Using this parameterization we are able to reconstruct the shower axis and give estimators for the energy of the air shower as well as the distance to the shower maximum.Comment: 15 pages, 10 figures, accepted for publication in JCA

    A method for high precision reconstruction of air shower Xmax using two-dimensional radio intensity profiles

    Get PDF
    The mass composition of cosmic rays contains important clues about their origin. Accurate measurements are needed to resolve long-standing issues such as the transition from Galactic to extragalactic origin, and the nature of the cutoff observed at the highest energies. Composition can be studied by measuring the atmospheric depth of the shower maximum Xmax of air showers generated by high-energy cosmic rays hitting the Earth's atmosphere. We present a new method to reconstruct Xmax based on radio measurements. The radio emission mechanism of air showers is a complex process that creates an asymmetric intensity pattern on the ground. The shape of this pattern strongly depends on the longitudinal development of the shower. We reconstruct Xmax by fitting two-dimensional intensity profiles, simulated with CoREAS, to data from the LOFAR radio telescope. In the dense LOFAR core, air showers are detected by hundreds of antennas simultaneously. The simulations fit the data very well, indicating that the radiation mechanism is now well-understood. The typical uncertainty on the reconstruction of Xmax for LOFAR showers is 17 g/cm^2.Comment: 12 pages, 10 figures, submitted to Phys. Rev.

    Realtime processing of LOFAR data for the detection of nano-second pulses from the Moon

    Get PDF
    The low flux of the ultra-high energy cosmic rays (UHECR) at the highest energies provides a challenge to answer the long standing question about their origin and nature. Even lower fluxes of neutrinos with energies above 102210^{22} eV are predicted in certain Grand-Unifying-Theories (GUTs) and e.g.\ models for super-heavy dark matter (SHDM). The significant increase in detector volume required to detect these particles can be achieved by searching for the nano-second radio pulses that are emitted when a particle interacts in Earth's moon with current and future radio telescopes. In this contribution we present the design of an online analysis and trigger pipeline for the detection of nano-second pulses with the LOFAR radio telescope. The most important steps of the processing pipeline are digital focusing of the antennas towards the Moon, correction of the signal for ionospheric dispersion, and synthesis of the time-domain signal from the polyphased-filtered signal in frequency domain. The implementation of the pipeline on a GPU/CPU cluster will be discussed together with the computing performance of the prototype.Comment: Proceedings of the 22nd International Conference on Computing in High Energy and Nuclear Physics (CHEP2016), US

    Boson-conserving one-nucleon transfer operator in the interacting boson model

    Get PDF
    The boson-conserving one-nucleon transfer operator in the interacting boson model (IBA) is reanalyzed. Extra terms are added to the usual form used for that operator. These new terms change generalized seniority by one unit, as the ones considered up to now. The results obtained using the new form for the transfer operator are compared with those obtained with the traditional form in a simple case involving the pseudo-spin Bose-Fermi symmetry UB(6)UF(12)U^{B}(6) \otimes U^F(12) in its UBF(5)UF(2)U^{BF}(5) \otimes U^F(2) limit. Sizeable differences are found. These results are of relevance in the study of transfer reactions to check nuclear supersymmetry and in the description of (\beta)-decay within IBA.Comment: 13 pages, 1 table, 0 figures. To be published in Phys. Rev.
    corecore